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1  Introduction 
It is becoming difficult to control the 

short channel effect in conventional bulk 
devices up to date. To overcome this prob-
lem, three-dimensional (3-D) device struc-
tures, such as FinFET, have been proposed  
[1].  The aim of this study is to establish 
fabrication processes of these 3-D CMOS for 
the next generation.  During the course of 
the study a multi-gate 3-D NMOS transis-
tor, beam channel transistor (BCT) [2] was 
successfully fabricated as shown in Fig. 1. 
Since the BCT has higher-aspect ratio than 
any other 3-D devices, it provides higher 
drive current per planer area.  
 
2  Fabrication processes of BCT 
2-1  High aspect ratio fabrication tech-
nique 

To realize the BCT, fabrication processes 
for high-aspect ratio Si-beam and gate 
electrode are key techniques.  With respect 
to the Si-beam formation, an anisotropic 
wet etching using TMAH（ tetra methyl 
ammonium hydroxide） is utilized, which 
can etch {110} at least 30-times faster than 
{111} has been proposed [2].  

Furthermore, it is difficult to form the 
gate-sidewall spacer same as conventional 
planer devices. In this study, we have pro-
posed the use of impurity-enhanced oxida-
tion(IEO [3]).  Oxidation thicknesses of 
phosphorous doped n+poly-Si and Si sub-
strate（boron doped, 1x1015 /cm3）are shown 
in Fig. 2.  The ratio of oxidation exceeds 
almost 10 at 700℃ [4].  Thus the sidewall 
spacer is formed on the gate electrode sur-
rounding on high aspect ratio Si-beam (Fig. 
3). 
 
2-2  Source / drain formation processes 

Source and drain (S/D) of the BCT are 
formed on sidewalls of Si-beams, therefore 
it is rather difficult to carry out uniform 
doping on steep and dense beams.  Al-
though one way to form the S/D is the 
phosphorous diffusion by POCl3 gaseous 
doping, controlled doping is rather difficult 
as compared to ion implantation.   There-
fore, ion implantation and/or plasma doping 
are applied to the BCT.  It is important to 
adjust an angle of inclination with the ion 
implantation.  In plasma doping, rela-
tively isotropic doping can be realized.  

From this point of view, this may be suit-
able for 3-D device fabrication, despite its 
wide distribution of doping energy. 
 
2-3  Silicidation of source and drain  

A beam width dependence of the drain 
on-current, as shown in Fig. 4, may imply 
that parasitic series resistance of S/D 
causes the drain current decrease in pre-
vious devices [4].  This estimation is sup-
ported by experimental results shown in 
Figs. 5 and 6.  Figure 5 shows that rapid 
increase in series resistance at less than 
beam width of 300 nm.  The spacing be-
tween gate to contact dependence of drain 
current is shown in Fig. 6.  From these 
experimental results, it is inevitable to re-
duce the S/D parasitic resistance in the 
BCT fabrication.  

Thus, silicidation process of source and 
drain is planned to be utilized along with 
gate sidewall spacer formed by IEO.  
 
3  Conclusion 

Fabrication processes of BCT are pre-
sented.  The main goal of this study is to 
establish compromising of fabrication 
processes for 3-D CMOS transistor with 
very high-aspect ratio Si beams. 
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Fig. 1 Schematic diagram of 3-D transistor
having beam channel which is 1.0μm in
height and 40 nm in width.  
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Fig. 3 Cross-sectional SEM photograph
for obtained gate structure. 
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Fig. 5 Parasitic series resistances 
of S/D depending on beam width. 

  

Fig. 7 SEM photographs of a Si-beam of 120 nm in height and
gate electrode overlaying the beam. 
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Fig. 2 Oxidation thicknesses of P 
doped n+poly-Si and Si substrate. 
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Fig. 4. Dependence of Id  on Wb
in on state. 
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