Nanoscale Silicon Devices Using Nanostructure Physics for VLSI Applications

T. Hiramoto, K. Miyaji, M. Kobayashi Institute of Industrial Science, University of Tokyo hiramoto@nano.iis.u-tokyo.ac.jp

- 1. Introduction: Three stages in Silicon Nanoelectronics
- 2. The First Stage: Mobility Enhancement
- 3. The Second Stage
 - 3.1. Silicon Nanocrystal Memories
 - 3.2. Single-Electron Transistors
- 4. Summary

ITRS (Roadmap)

Transistors (Information Processing)

1

Information Processing Devices

- No better device other than CMOS in "charge-based".
- CMOS extension will be the most important.

Memories

Memory and Storage Devices

- New materials and nano-structures only for memory cells Other circuits are based on conventional CMOS
- Good examples of the second stage

Three Stages in Silicon Nanoelectronics

2. The First Stage – CMOS Extension

Mobility Enhancement by Quantum Confinement

6

Threshold Voltage Increase

2-D: Ultra-Thin Channel

SEM Images of Ultra-Narrow Channels

< 10 nm **Channel width Channel length** 250 nm Gate oxide thickness 34 nm SOI thickness 7 nm H. Majima et al., IEDM, 1999.

Higher Mobility in [100] Direction

Mobility Enhancement in (110) PMOS

- Mobility at 3.6nm is as high as bulk PMOS - Suppression of inter-subband phonon scattering assisted by optical phonon absorption that is the transition between two lowest-lving heavy-hole subbands

[10] H. Irie et al., IEDM, 2004, p.225. 12

Coulomb Blockade Oscillations at RT

Largest CB Oscillations at RT

Charge Polarity and Direction Dependence

Possible Formation Mechanism of a Dot

Comparison of SET and SHT

M. Kobayashi and T. Hiramoto, IEDM, p. 1007, 2006. 31

Even Larger CB Oscillations

M. Kobayashi and T. Hiramoto, IEDM, p. 1007, 2006. 32

More Functionality (Data Storage)

Storage of Colors and Read

Application to Analog Pattern Matching

After Writing

Summary

- 1. There are three stages in the research of silicon Nanoelectronics.
- 2. "CMOS Extension" and "New Functions Added to CMOS" will be important.
- 3. Mobility enhancement by quantum confinement.
- 4. SETs/SHTs should be merged into CMOS.