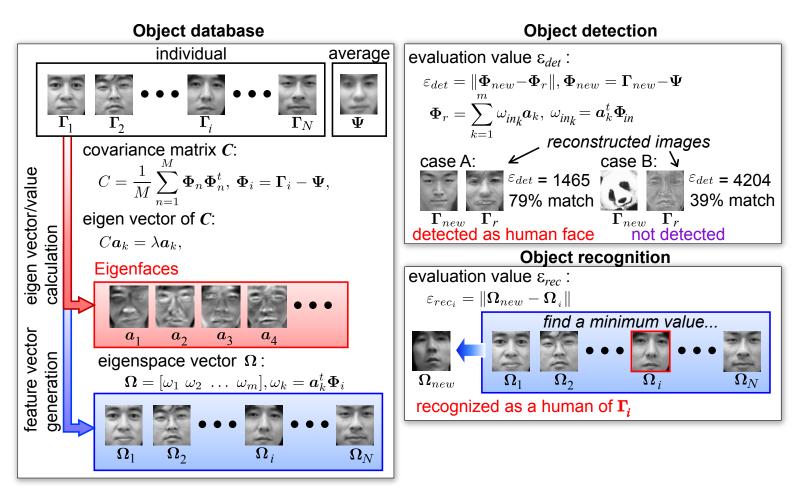
An Object Detection/Recognition System using a 3-Dimensional Integration with Local and Global Wireless Interconnections

Hiroshi Ando, Seiji Kameda, Nobuo Sasaki, Daisuke Arizono, Kentaro Kimoto[†], Norimitsu Fuchigami, Kouta Kaya, Mamoru Sasaki, Takamaro Kikkawa[†] and Atsushi Iwata

Graduate School of Advanced Sciences of Matter, Hiroshima University [†]Research Center for Nanodevices and Systems, Hiroshima University

1. Introduction


In order to realize hyper brain system which can recognize various objects in real-time/real-world, numbers of chips with massively parallel processing recognize various objects in real-time/real-world, numbers of chips with massively parallel processing and wideband interconnection capabilities are needed.

To solve the problem, we have proposed the 3-dimensional custom stack system (3DCSS) using two kinds of wireless interconnections: inductive coupling local wireless interconnect (LWI) and antenna coupling global wireless interconnect (GWI).

In this research, we have developed the architecture adopting Eigenfaces method based on PCA (Principal method with 3DCSS, we have proposed architecture of the multi-object recognition system. We have also types of chips with

2. Object detection/recognition algorithm

The Eigenfaces method should be suitable for object recognition hardware architecture because of several advantages in both of recognition performance and hardware implementation. The various kinds of object can be detected and recognized by only preparing each individual database of them without changing processing. In hardware implementation, we can implement it with massively parallel circuit architecture and conventional digital circuit techniques without nonlinear processing, and design a chip which is nonlinear processing, and design a chip which is commonly applied to detection and recognition without increasing in circuit area.

3. Hardware implementation

The multi-object recognition system consists of three kinds of chips, that is Visual Processing chip (VP3D), Detection/Recognition chip (DR3D) and Reference Memory chip (RM3D). Each chip has 1x2ch LWIs which can transmit to and receive data from neighboring chips simultaneously and 2ch GWIs for clock and binary digital data receiving. The RM3D has 2ch GWIs and transmitter circuits for clock and data.

An original image data is stored in RM3D₁ and transmitted to neighboring VP3D in 21pixel parallel PWM (pulse width modulation) signals (LWI-1). The massively parallel image pre-processing is implemented by several VP3Ds and resulted image data is transmitted to RM3D₂ with LWI-2 as same as LWI-1. The

DR3D receives processed image data and object database through LWI-3, or after storing other database to RM3D₂ from RM3D_N by GWI-2, and detects and recognized objects.

This system has the ability of 40GOPS (Giga Operation Per Second) at 250MHz operation.

Therefore, we expect to derive 160GOPS performance at the maximum LWI operation (1Gbps/1ch at present).

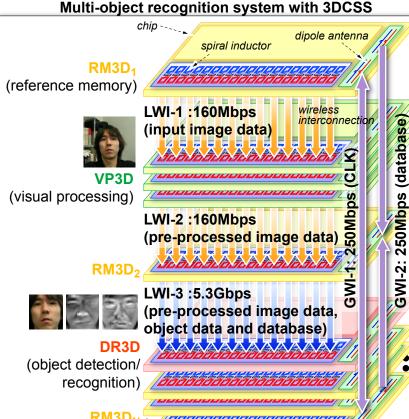
Block diagrams of RM3D LWI block

cniral inductor

average data

Microphotograph of RM3D

Block diagrams of DR3D


Microphotograph of DR3D

Specification

LWI block spiral inductor Tx/Rx Tx/Rx ••• Tx/Rx x21	
Selector Select	Solution block $32x32 \text{ shift}$ $32x32 \text{ shift}$ $32x32 \text{ shift}$ $32x32 \text{ shift}$ register (\mathbf{I}_i) register (\mathbf{I}_k) register (\mathbf{a}_k) data x 32 $x 32$
0.18µm CMOS technology	
LWI 123kbits SRAM for eigen data Data Tx 56kbits SRAM for image data 196kbits SRAM	Data Rx Object detection/recognition

technology	0.18µm	
supply voltage	1.8V	
clock frequency	250MHz	
chip size	5x5mm ²	
image size	84x84	
object size	32x32	
RM3D		
image data	56kbits	
average data	196kbits	
eigen data	123kbits	
DR3D		
detection time	580µs	
recognition time	4.2µs	
(one-to-one)		

The 20.6ms detection time and 12.7ms recognition time (30fps) should be achieved if we estimate the system ability at QVGA image which includes about 30 objects and 100 database objects.

