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1. Introduction 

Recently, the progress of robots is remarkable in the field of 
high speed operation, humanoid, imitation of behavior and 
entertainment. Nevertheless, few autonomous robots having 
behavior-learning capability are developed. The main reason is 
that learning is insecure to environmental change and the 
learning speed is slow. The main reason is that robots can’t 
follow the change of environments where robots execute their 
task because the learning speed is slow.  

In order to solve the problem ， we utilized “module 
learning”[1][2]. Figure 1 shows the block diagram. In module 
learning, there are multiple modules, each of which consists of 
an environmental model (EM), a learning function and a 
policy. The policy means the map from a situation that 
robots face with to an action. The learning module modifies 
the policy. An EM has features of a specific environment. The 
learning process is as follows: 1. Selection a module which has 
an EM which shows features most similar to the current 
environment. 2. Action based on the policy of the module, 3. 
Modification of the policy by learning module based on the 
reaction from the current environment. 4. Addition of the 
module if necessary. 

To improve learning capability of the conventional learning 
algorithm using only one module, the new learning algorithm 
utilizing more than two modules has been proposed.  
However, it is difficult for the proposed module learning to be 
implemented into LSI because huge memory capacity is 
required. There are two reasons. One (P1) is huge memory 
capacity required for an EM. The other (P2) is that the 
proposed module learning basically requires the same number 
of modules as that of environments. Therefore, we propose an 
effective algorithm to solve each of P1 and P2. The 
effectiveness of the proposed algorithms is quantitatively 
evaluated in the simulation 
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Figure 1: Schematic diagram of standard module learning. 
 
2. A module learning algorithm using environment 
models with small data size 

We explain the first problem (P1) in module learning in 
detail: an EM requires a huge memory capacity. Typically, a 

set of probabilities p( s(t+1) | s(t), a(t) ) is used as an EM. p 
means the probability that next situation s(t+1) appears by 
taking action a(t) on the present situation s(t). That is, p is 
unique to an environment. Hence, p expresses the features of 
the environment. Here, a situation and an action are expressed 
as a vector because a situation (an action) is expressed as a set 
of values detected by some sensors (outputted by some 
actuators). The memory capacity required for p is estimated as 
Na(2rNse)2⋅mp(Na: the number of actions, r: sensor resolution 
[bit], Nse: the number of sensors, mp: unit data size of p [bit] ). 
Thus, the memory capacity for an EM becomes huge if the 
number of sensors and their resolution are large. Hence, the 
number of modules that robots can store has to be reduced 
because of physical limit of memory capacity as the number of 
sensors and their resolution are larger. However, reduction of 
modules makes performance worse in module learning.  
 
2.1. Proposed algorithm 

In order to solve the problem, we propose that a set of 
Q-functions Q(si, aj) is used, instead of p as an EM.  It 
expresses the quality of an action aj in a situation si  (larger Q 
means that an action is better). In other words, a set of unique 
Q-function to an environment is decided because the quality of 
an action in a situation depends on an environment. If we use a 
set of Q as a EM, memory capacity for Q is estimated as 
Na(2rNse) ⋅mn (mn : unit data size of p [bit] ). The memory 
capacity for an EM composed of Q is equal to (1/2) rNse times 
of the one for an EM composed for p. That is, an EM 
composed of Q allows more modules to be store than using p. 
We show the comparison with Q and p about memory capacity 
for an EM in Figure 2 in case that resolution of each sensor is 
3bits, Na is 100 and mp and mn are 8 bits. 
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Figure 2: Comparison of memory capacity for an EM 
composed of Q-function and that for an EM composed of 
probabilities p (resolution of each sensor is 3bits, num. of 
actions is 100 and unit data size of Q and p is 8bits). 

 
We explain processing procedure in our module learning 

algorithm with EMs composed of Q in Figure 3. We assume 
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that effective modules for some environment already have 
been obtained.  

We prepare Qobs(si, aj) which is Q-function, for evaluating 
features in the current environment. Qobs(si, aj) is updated as 
follows: Qobs (s, a) ← Qobs (s, a) + α(Rw + γmaxa’ Qobs (s’, a’) – 
Qobs (s, a))), where s, a, s’, a’ means the last situation, the last 
action, the current situation and the next action to select, 
respectively. α and γ(0< α, γ<1) are called discount parameter 
and step size parameter. Rw is reward given by the current 
environment when a robot achieve to goal situation. This 
update rule is called Q-Learning. Qx which is Q-function in a 
module is also updated in the same way(x: index of module). 

The way to select a module is as follows. RX, which is 
reciprocal of the difference between the updated QX and Qobs, 
is calculated. The module that has the maximum value of Rx is 
selected. This means that the module with the closest Qx to 
Qobs is selected. However, if some modules have the values 
being close to the maximum Rx, the proper module may not be 
selected. So, we define another measure Vx, which is the sum 
of reward. It can express the justice of the selected module. 
When the module is selected, we consider also the measure Vx 
as follows. If Vx is the smallest, the module must not be 
selected. In order to avoid too large value of Vx, it is reset 
when the value is larger than a constant.  

Dynamic
Environment

Policy x

Qx(si, aj)

Module x

Q-Learning

action

situation, reward

Memory

Module1

Module n

Policy x

Qx(si, aj)

Module x

Qobs(si, aj)

x

Q-Learning

R1

Rx

Rn

+
-

+
-

-
+

Sbx

Sb1

Sbn

| Sbx |-1

| Sbn |-1

| Sb1 |-1

max Rx
&

not min Vx
x

Vx: total
reward(goal)

Module selection
 criterion

situation, reward

Select a module

Module learning with EMs composed of Q-Function

Module selection Detect features of the current environment

 Action based on the policy
 in the selected module

Modification of policy x
 based on Q

 

Figure 3: Processing procedure in the proposed module 
learning using environment models composed of 
Q-function. 

 
2.2. Simulation experiment and result  

In order to confirm the ability of the model, we applied it to 
air hockey game. The robot considers the opponent as a part of 
environments. The environment changes when the opponent’s 
feature changes. In an experiment, opponent’s feature has been 
varied by stick position as shown in Figure 4. The opponent is 
same program as the robot with a simple basic strategy. The 
strategy is fixed and is not tuned by learning. Rw is +1 or -1 
when robot gets or loses a point, respectively.  
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Figure 4: An example of the opponent’s feature. 

 
Figure 5 shows the result of the experiment. The stick 

position of the opponent changes from A to E (see Figure 4) 
every set. It is one set in 20 points. The number of stored 
modules is four. Before experiment, the four modules have 
been obtained by learning in case that the stick positions of 
opponent are fixed at A, B, C and D, respectively. The 
modules are called MA, MB, MC and MD. Figure 5(a) shows 
that the proper module except B was quickly selected. Here, 
we have considered the case of the position B. It is the second 
set. Figure 5(b) shows that the robot overwhelmingly won 
even by using the MC. Thus, the model has also selected the 
proper module in this case. Next, let us consider the case of the 
position E. Note that no module has been previously prepared 
for the position E. In order to confirm the selection of MC for 
the position E is appropriate, we had another experiment. In 
the experiment, we applied the modules from MA to MD to the 
position E. Figure 6 shows the result: The MC is the best 
module because the robot overwhelmingly won as comparison 
with the others. From the above discussions, effectiveness of 
the algorithm with EM using Q-function has been confirmed 
apparent. 
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Figure 5: The result of the experiment where the opponent’s 
stick position changes A from E by one set (=twenty 
points). 
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Figure 6: The total point given to the robot by using each 
module during the opponent’s stick position E. 
 

3. A module learning algorithm with fast learning and 
compact storage of modules  

Another problem (P2) in module learning is that it is 
basically difficult for one module for over two environments. 
Increasing the number of environments, a large number of 
modules and a large memory capacity are required.  For 
example, in Robocup Soccer, a hard disc memory with about 
100 GB was used [5]. Especially, in autonomous robot 
applications, memory capacity is limited with power 
dissipation and physical size. It is difficult to apply to the 
complex real environments. 

Then, we propose another advanced module based learning 
that reduces memory capacities. In our algorithm, one module 
is allocated for some environments, features of which are 
similar each other. Here, we call a module in this algorithm a 
representation module, “RM”. After selection of a RM, the 
policy in the RM selected is modified by reinforcement 
learning (RL) [3] based on partial policy correction[4]. RL 
based on partial policy correction is one of methods to learn 
Q-function and much faster than Q-Learning. Based on such a 
concept, this module learning algorithm can reduces memory 
capacities and keeps high adaptation to environmental change. 

The processing procedure in this algorithm is shown in Fig. 
7. It is as follows: (1) detection of the current environment, (2) 
selection of one a RM from stored RMs which is suitable to 
adapt multiple environments, (3) modification of the policy in 
the selected RM by RL based on partial policy correction and 
(4) addition of the RM modified or elimination of it.  
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Figure 7: Processing procedure in the proposed module 
learning with fast learning and compact storage of modules. 
 
3.1 Detection of the environmental change and selection of 
a RM 

In this algorithm, we simply use the rate of achievement (R) 
which means how often robots have achieved the goal to 
detect environmental change and select a RM, instead for EM. 
This is because the purpose of this algorithm is not detection 

of the environmental change but fast learning and module 
storage. Hence, R is large if the current policy works 
effectively. If it is lower than a threshold Rg during some 
periods, the system selects another RM which is added more 
newly than the current one. 
 
3.2. Learning of RM and addition of a new RM 

The RL based on partial policy correction uses Q-Learning, 
RL based on partial policy correction has only one policy. 
(The policy means the map from a situation to an action.) It 
applies the policy constructed in the last environment to the 
current environment. When R is lower than Rg, some Q(s, a) 
including the main factor is corrected partially. Therefore, if 
both of the last and the current environments are alike, 
learning is very fast and moreover, the suitable policy to both 
environments is obtained. Consequently the memory is also 
saved because on policy can be utilized to at least two 
environments. In contrast, when they are very different, 
learning is very slow. In order to solve this problem, in the 
proposed algorithm, multiple RM, that is multiple policies can 
be stored.  

Addition of a new RM is carried out as follows. The 
correlation is calculated between each memorized module and 
the selected one, the policy in which has just been modified by 
RL based on partial policy correction. If the correlation is 
lower than a threshold, the new one is added to the memory. 
On the other hand, if the correlation is higher, the new one is 
eliminated. 
 
3.4. Simulation experiment and result 

In order to evaluate the ability of the proposed algorithm, 
we applied it to Maze Problem with some simulation 
experiments. Maze Problem is often used as an exercise for 
RL. We assumed a 5x5 maze in Figure 8. The purpose of the 
robot is to learn the shortest path from the start to the goal. The 
robot can select one of four actions :{ up, down, left, right} 
(selecting one action is defined as one step.). If the robot takes 
a hundred steps or arrives at the goal, the robot is returned to 
the start. The reward (Rw) is +1, or 0 if the robot reach the goal 
or not. 
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Figure 8: Maze problem (6 mazes are prepared and they  
change in some interval in this experiment). 

 
In order to evaluate the learning performance of the system 

for environmental changes, six kinds of mazes (a-f) are used. 
The maze changes randomly after Nc steps are taken. In order 
to compare the learning capability of the proposed algorithm 
with conventional methods, we applied Q-Learning and RL 
based on partial policy correction to this maze problem. 

Figure 9 shows the result during 20000 steps in case that Nc 
is 1000. The horizontal axis expresses steps and the vertical 
axis expresses the following: (a): environmental change, 
(b)-(d): number of steps required from the start to the current 



situation with the proposed system, RL with partial policy 
correction and Q-Learning, respectively. In (b)-(d), as the 
value of the vertical axis is smaller, the system has an effective 
policy. While Q Learning and RL based on partial policy 
correction constructed the effective policy only for the maze 
“a”, the proposed algorithm learned the multiple effective 
policies for almost all mazes except maze “b”. 

Figure 10 shows simulation results of total rewards vs. Nc 
in 20000 steps. From Figure 10, the performance of the 
proposed system is better than the other methods over all of 
Nc. Additionally, the system constructed only two RM over all 
of Nc.  

Above the discussion, our module learning algorithm can 
use the memory effectively and keep high adaptation to 
environmental change. 
 
4. Conclusion 

We proposed two types of module learning algorithm for 
robot in order to adapt environmental change faster: 1. a 
module learning algorithm using environment models with 
small data size, 2. another module learning algorithm with fast 
learning and compact storage of modules for module learning. 
It was confirmed by the simulation experiments that both 
algorithm are robust to environmental change and uses its 
memory more effectively. As next step, we’ll incorporate EM 
used in the first algorithm into detection of environmental 
change and selection of RM in the second algorithm. 
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Figure 9: Result of the simulation experiment 1: the 
learning performance during 20000 steps (the environment 
changes randomly after the robot experience 1000 steps, 
(a): proposed algorithm, (b) RL based on partial policy 
correction (c): Q-Learning) 
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Figure 10: Result of the simulation experiment 2: Total 
rewards vs. Nc in 20000 steps (a maze changes randomly 
after the robot experiences Nc steps ). 


