
Learning Algorithms for Robots Behaving Flexibly in Dynamic Environments

Masahiro Ono, Hiroshi Ando, Mamoru Sasaki and Atsushi Iwata

Graduate School of Advanced Sciences of Matter, Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima-shi 739-8527, Japan

Phone and Fax: +81-824-22-7358, Email: {masa, ando, sasaki, iwa}@dsl.hiroshima-u.ac.jp

1. Introduction

Recently, the progress of robots is remarkable in the field of
high speed operation, humanoid, imitation of behavior and
entertainment. Nevertheless, few autonomous robots having
behavior-learning capability are developed. The main reason is
that learning is insecure to environmental change and the
learning speed is slow. The main reason is that robots can’t
follow the change of environments where robots execute their
task because the learning speed is slow.

In order to solve the problem ， we utilized “module
learning”[1][2]. Figure 1 shows the block diagram. In module
learning, there are multiple modules, each of which consists of
an environmental model (EM), a learning function and a
policy. The policy means the map from a situation that
robots face with to an action. The learning module modifies
the policy. An EM has features of a specific environment. The
learning process is as follows: 1. Selection a module which has
an EM which shows features most similar to the current
environment. 2. Action based on the policy of the module, 3.
Modification of the policy by learning module based on the
reaction from the current environment. 4. Addition of the
module if necessary.

To improve learning capability of the conventional learning
algorithm using only one module, the new learning algorithm
utilizing more than two modules has been proposed.
However, it is difficult for the proposed module learning to be
implemented into LSI because huge memory capacity is
required. There are two reasons. One (P1) is huge memory
capacity required for an EM. The other (P2) is that the
proposed module learning basically requires the same number
of modules as that of environments. Therefore, we propose an
effective algorithm to solve each of P1 and P2. The
effectiveness of the proposed algorithms is quantitatively
evaluated in the simulation

4. Addition of the Module
(if necessary)

Module1

Memory

addition

1. Selection of a Module

Module learning algorithm

Module2

ModuleN

Learning
function

Policy

Environment
Model(EM)

3. Modification of the Policy
 by Learning Module

Dynamic
Environment

Env. x1

Env. xx
time

action

2. Action based on the policy
 in the selected module

situation

Environment
Model(EM)

Learning
function

Policy

 Which is an EM
 closest to the current Env.?

Module2

Select
a module

Figure 1: Schematic diagram of standard module learning.

2. A module learning algorithm using environment
models with small data size

We explain the first problem (P1) in module learning in
detail: an EM requires a huge memory capacity. Typically, a

set of probabilities p(s(t+1) | s(t), a(t)) is used as an EM. p
means the probability that next situation s(t+1) appears by
taking action a(t) on the present situation s(t). That is, p is
unique to an environment. Hence, p expresses the features of
the environment. Here, a situation and an action are expressed
as a vector because a situation (an action) is expressed as a set
of values detected by some sensors (outputted by some
actuators). The memory capacity required for p is estimated as
Na(2rNse)2⋅mp(Na: the number of actions, r: sensor resolution
[bit], Nse: the number of sensors, mp: unit data size of p [bit]).
Thus, the memory capacity for an EM becomes huge if the
number of sensors and their resolution are large. Hence, the
number of modules that robots can store has to be reduced
because of physical limit of memory capacity as the number of
sensors and their resolution are larger. However, reduction of
modules makes performance worse in module learning.

2.1. Proposed algorithm

In order to solve the problem, we propose that a set of
Q-functions Q(si, aj) is used, instead of p as an EM. It
expresses the quality of an action aj in a situation si (larger Q
means that an action is better). In other words, a set of unique
Q-function to an environment is decided because the quality of
an action in a situation depends on an environment. If we use a
set of Q as a EM, memory capacity for Q is estimated as
Na(2rNse) ⋅mn (mn : unit data size of p [bit]). The memory
capacity for an EM composed of Q is equal to (1/2) rNse times
of the one for an EM composed for p. That is, an EM
composed of Q allows more modules to be store than using p.
We show the comparison with Q and p about memory capacity
for an EM in Figure 2 in case that resolution of each sensor is
3bits, Na is 100 and mp and mn are 8 bits.

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1 2 3 4 5

num. of sensors(Nse)

m
em

or
y

c
ap

ac
it
y

[b
it
] An EM composed of Q

requires (1/2)rNse times the memory capacity
of the one composed of p
(r: resolution of each sensor)

An EM composed of Q
p

Figure 2: Comparison of memory capacity for an EM
composed of Q-function and that for an EM composed of
probabilities p (resolution of each sensor is 3bits, num. of
actions is 100 and unit data size of Q and p is 8bits).

We explain processing procedure in our module learning

algorithm with EMs composed of Q in Figure 3. We assume

mailto:iwa}@dsl.hiroshima-u.ac.jp

that effective modules for some environment already have
been obtained.

We prepare Qobs(si, aj) which is Q-function, for evaluating
features in the current environment. Qobs(si, aj) is updated as
follows: Qobs (s, a) ← Qobs (s, a) + α(Rw + γmaxa’ Qobs (s’, a’) –
Qobs (s, a))), where s, a, s’, a’ means the last situation, the last
action, the current situation and the next action to select,
respectively. α and γ(0< α, γ<1) are called discount parameter
and step size parameter. Rw is reward given by the current
environment when a robot achieve to goal situation. This
update rule is called Q-Learning. Qx which is Q-function in a
module is also updated in the same way(x: index of module).

The way to select a module is as follows. RX, which is
reciprocal of the difference between the updated QX and Qobs,
is calculated. The module that has the maximum value of Rx is
selected. This means that the module with the closest Qx to
Qobs is selected. However, if some modules have the values
being close to the maximum Rx, the proper module may not be
selected. So, we define another measure Vx, which is the sum
of reward. It can express the justice of the selected module.
When the module is selected, we consider also the measure Vx
as follows. If Vx is the smallest, the module must not be
selected. In order to avoid too large value of Vx, it is reset
when the value is larger than a constant.

Dynamic
Environment

Policy x

Qx(si, aj)

Module x

Q-Learning

action

situation, reward

Memory

Module1

Module n

Policy x

Qx(si, aj)

Module x

Qobs(si, aj)

x

Q-Learning

R1

Rx

Rn

+
-

+
-

-
+

Sbx

Sb1

Sbn

| Sbx |-1

| Sbn |-1

| Sb1 |-1

max Rx
&

not min Vx
x

Vx: total
reward(goal)

Module selection
 criterion

situation, reward

Select a module

Module learning with EMs composed of Q-Function

Module selection Detect features of the current environment

 Action based on the policy
 in the selected module

Modification of policy x
 based on Q

Figure 3: Processing procedure in the proposed module
learning using environment models composed of
Q-function.

2.2. Simulation experiment and result

In order to confirm the ability of the model, we applied it to
air hockey game. The robot considers the opponent as a part of
environments. The environment changes when the opponent’s
feature changes. In an experiment, opponent’s feature has been
varied by stick position as shown in Figure 4. The opponent is
same program as the robot with a simple basic strategy. The
strategy is fixed and is not tuned by learning. Rw is +1 or -1
when robot gets or loses a point, respectively.

opponent

robot

robot’s (fixed)

opponent’stick

A

BC

D

E

opponent

robot

robot’s (fixed)

opponent’stick

A

BC

D

E

Figure 4: An example of the opponent’s feature.

Figure 5 shows the result of the experiment. The stick

position of the opponent changes from A to E (see Figure 4)
every set. It is one set in 20 points. The number of stored
modules is four. Before experiment, the four modules have
been obtained by learning in case that the stick positions of
opponent are fixed at A, B, C and D, respectively. The
modules are called MA, MB, MC and MD. Figure 5(a) shows
that the proper module except B was quickly selected. Here,
we have considered the case of the position B. It is the second
set. Figure 5(b) shows that the robot overwhelmingly won
even by using the MC. Thus, the model has also selected the
proper module in this case. Next, let us consider the case of the
position E. Note that no module has been previously prepared
for the position E. In order to confirm the selection of MC for
the position E is appropriate, we had another experiment. In
the experiment, we applied the modules from MA to MD to the
position E. Figure 6 shows the result: The MC is the best
module because the robot overwhelmingly won as comparison
with the others. From the above discussions, effectiveness of
the algorithm with EM using Q-function has been confirmed
apparent.

game number

robot opponent

(b) The total of the points that the robot and opponent got

0
5

10
15
20
25

0 20 40 60 80 100 120

game number
(a) A robot’s selecting strategy

A B C D E

game number
(c) Rx(the reciprocal of the difference between Qx and Qobs)

R

0
1E+16
2E+16
3E+16
4E+16
5E+16
6E+16
7E+16
8E+16

0 20 40 60 80 100 120

game number

V

-2
3
8

13
18
23
28
33
38

0 20 40 60 80 100 120

0

1

2

3

4

0 20 40 60 80 100 120

RA

V V V V

(d) The evaluate function Vx

latot
p

stnio

MD

MC

MB

MA

RB RC RD

A B C D

m
od

ul
e

Figure 5: The result of the experiment where the opponent’s
stick position changes A from E by one set (=twenty
points).

0

5

10

15

20

0 50 100 150 200

0

5

10

15

20

0 50 100 150 200

A B C D

game number

to
ta

lp
oi

nt

Module C shows best performance
in case of opponent’ s stick pos. E.

Figure 6: The total point given to the robot by using each
module during the opponent’s stick position E.

3. A module learning algorithm with fast learning and
compact storage of modules

Another problem (P2) in module learning is that it is
basically difficult for one module for over two environments.
Increasing the number of environments, a large number of
modules and a large memory capacity are required. For
example, in Robocup Soccer, a hard disc memory with about
100 GB was used [5]. Especially, in autonomous robot
applications, memory capacity is limited with power
dissipation and physical size. It is difficult to apply to the
complex real environments.

Then, we propose another advanced module based learning
that reduces memory capacities. In our algorithm, one module
is allocated for some environments, features of which are
similar each other. Here, we call a module in this algorithm a
representation module, “RM”. After selection of a RM, the
policy in the RM selected is modified by reinforcement
learning (RL) [3] based on partial policy correction[4]. RL
based on partial policy correction is one of methods to learn
Q-function and much faster than Q-Learning. Based on such a
concept, this module learning algorithm can reduces memory
capacities and keeps high adaptation to environmental change.

The processing procedure in this algorithm is shown in Fig.
7. It is as follows: (1) detection of the current environment, (2)
selection of one a RM from stored RMs which is suitable to
adapt multiple environments, (3) modification of the policy in
the selected RM by RL based on partial policy correction and
(4) addition of the RM modified or elimination of it.

Dynamic
Environment

3. Policy Learning based on
Representation Module

4. Addition or Elimination
of the Current Module

Representation Module1

 ModuleN

 Module2

Memory

addition

action

1. Detection of Enviromental Change

2. Selection of Representation Module

situation

Proposed module learning

algorithm

Figure 7: Processing procedure in the proposed module
learning with fast learning and compact storage of modules.

3.1 Detection of the environmental change and selection of
a RM

In this algorithm, we simply use the rate of achievement (R)
which means how often robots have achieved the goal to
detect environmental change and select a RM, instead for EM.
This is because the purpose of this algorithm is not detection

of the environmental change but fast learning and module
storage. Hence, R is large if the current policy works
effectively. If it is lower than a threshold Rg during some
periods, the system selects another RM which is added more
newly than the current one.

3.2. Learning of RM and addition of a new RM

The RL based on partial policy correction uses Q-Learning,
RL based on partial policy correction has only one policy.
(The policy means the map from a situation to an action.) It
applies the policy constructed in the last environment to the
current environment. When R is lower than Rg, some Q(s, a)
including the main factor is corrected partially. Therefore, if
both of the last and the current environments are alike,
learning is very fast and moreover, the suitable policy to both
environments is obtained. Consequently the memory is also
saved because on policy can be utilized to at least two
environments. In contrast, when they are very different,
learning is very slow. In order to solve this problem, in the
proposed algorithm, multiple RM, that is multiple policies can
be stored.

Addition of a new RM is carried out as follows. The
correlation is calculated between each memorized module and
the selected one, the policy in which has just been modified by
RL based on partial policy correction. If the correlation is
lower than a threshold, the new one is added to the memory.
On the other hand, if the correlation is higher, the new one is
eliminated.

3.4. Simulation experiment and result

In order to evaluate the ability of the proposed algorithm,
we applied it to Maze Problem with some simulation
experiments. Maze Problem is often used as an exercise for
RL. We assumed a 5x5 maze in Figure 8. The purpose of the
robot is to learn the shortest path from the start to the goal. The
robot can select one of four actions :{ up, down, left, right}
(selecting one action is defined as one step.). If the robot takes
a hundred steps or arrives at the goal, the robot is returned to
the start. The reward (Rw) is +1, or 0 if the robot reach the goal
or not.

Start

Goal

Wall
Robot

Figure 8: Maze problem (6 mazes are prepared and they
change in some interval in this experiment).

In order to evaluate the learning performance of the system

for environmental changes, six kinds of mazes (a-f) are used.
The maze changes randomly after Nc steps are taken. In order
to compare the learning capability of the proposed algorithm
with conventional methods, we applied Q-Learning and RL
based on partial policy correction to this maze problem.

Figure 9 shows the result during 20000 steps in case that Nc
is 1000. The horizontal axis expresses steps and the vertical
axis expresses the following: (a): environmental change,
(b)-(d): number of steps required from the start to the current

situation with the proposed system, RL with partial policy
correction and Q-Learning, respectively. In (b)-(d), as the
value of the vertical axis is smaller, the system has an effective
policy. While Q Learning and RL based on partial policy
correction constructed the effective policy only for the maze
“a”, the proposed algorithm learned the multiple effective
policies for almost all mazes except maze “b”.

Figure 10 shows simulation results of total rewards vs. Nc
in 20000 steps. From Figure 10, the performance of the
proposed system is better than the other methods over all of
Nc. Additionally, the system constructed only two RM over all
of Nc.

Above the discussion, our module learning algorithm can
use the memory effectively and keep high adaptation to
environmental change.

4. Conclusion

We proposed two types of module learning algorithm for
robot in order to adapt environmental change faster: 1. a
module learning algorithm using environment models with
small data size, 2. another module learning algorithm with fast
learning and compact storage of modules for module learning.
It was confirmed by the simulation experiments that both
algorithm are robust to environmental change and uses its
memory more effectively. As next step, we’ll incorporate EM
used in the first algorithm into detection of environmental
change and selection of RM in the second algorithm.

References
[1] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton,
“Adaptive mixture of experts”, Neural Computation, vol.3,
pp.79-87, 1991.
[2] K. Doya et al., Technical report, Kawato Dynamic Brain
Project Technical Report, KDB-TR-08, Japan Science and
Technology Corporation, June 2000.
[3] Richard S.Sutton and Andrew G.Barto, Reinforcement
Learning, MIT Press, 1998.
[4] T. Minato et al., Journal of the Robotics Society of Japan, Vol.
18, No. 5, pp. 706-712, 2000.
[5] Yasutake Takahashi, Kazuhiro Edazawa, and Minoru Asada.
Modular Learning System and Scheduling for Behavior
Acquisition in Multi-Agent Environment. RoboCup 2004
Symposium papers and team description papers.

a
b

c
d
e
f

En
vi

ro
nm

en
t

5000 10000 15000 20000

100

75

50

25

100

75

50

25

100

75

50

25

5000 10000 15000 20000

5000 10000 15000 20000

5000 10000 15000 20000

(a) Environmental Chang e

(b) Proposed System

(c) RL with partial policy correction

(d) Q Learning

Time

Time

Time

Time

N
um

be
ro

fp
er

fo
rm

ed
ac

tio
ns

N
um

be
ro

fp
er

fo
rm

ed
ac

tio
ns

N
um

be
ro

fp
er

fo
rm

ed
ac

tio
ns

Figure 9: Result of the simulation experiment 1: the
learning performance during 20000 steps (the environment
changes randomly after the robot experience 1000 steps,
(a): proposed algorithm, (b) RL based on partial policy
correction (c): Q-Learning)

10 100 1000 100001 100000

10

100

1000

10000

1

Proposed algorithm

QL
RL with partial policy correction

Nc

To
ta

lr
ew

ar
ds

Proposed algorithm is better in all Nc
than the others

Figure 10: Result of the simulation experiment 2: Total
rewards vs. Nc in 20000 steps (a maze changes randomly
after the robot experiences Nc steps).

