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1. Introduction 

Multimedia applications, requiring the capabilities of codec 
processing, image processing or image recognition, have spread 
to the end-user environment. In particular, the modern com-
munication-network infrastructure accelerates the development 
of on-demand systems, digital broadcasting, mobile machinery 
and so on. Furthermore, security applications, for example ci-
phers, are developing more and more. The required basic proc-
essing operations for applications can be classified into two 
types, the arithmetic and the coding operations. In case of the 
JPEG algorithm for picture compression, the arithmetic opera-
tions mainly consist of DCT and quantization. As coding op-
eration the JPEG algorithm uses Huffman coding. Generally, 
Huffman coding needs to prepare a code word table that con-
tains the mapping information between the input symbols and 
the code words for encoding. Thus, Huffman coding is difficult 
to parallelize, because it involves essentially sequential opera-
tions requiring a large hardware amount. Presently, conven-
tional architectures for consumer products mainly improve the 
arithmetic operations based on e.g. Single Instruction Multiple 
Data (SIMD) architectures. Therefore, the coding operation is 
now becoming the bottleneck operation for fast real-time ap-
plications working with multimedia and security contents.   

For overcoming this coding-operation-related bottleneck, we 
propose an efficient parallel coding architecture using multi-
ported content addressable memory as a novel architecture for 
high-speed and real-time coding operations. The multi-ported 
CAM effectively uses the previously reported Flexible Multi-
ported Content Addressable Memory (FMCAM) technology [1] 
and enables the coding of multiple input symbols in parallel, 
while the hardware amount becomes lower than for conven-
tional architectures. 

 
2. Conventional Coding Architectures 

This section discusses Huffman coding, which is a representa-
tive example for coding algorithms and is implemented in JPEG 
and MPEG standards for compressing multimedia contents. Es-
pecially, the encoding operation in Huffman coding is known 
to be difficult to implement with parallel processing [2].  

General Huffman encoding has to prepare an optimized code 
word table according to the distribution features of the contents. 
Therefore, the conventional architecture, which is imple-
mented in general Huffman encoding hardware, spends many 
clock cycles for processing the input data. To overcome this 
drawback, the so-called static Huffman encoding, which uses a 
fixed standardized code word table, has often been implemented 
by the conventional coding architectures. Most real applica-
tions use static Huffman encoding and thus the standardized 
coding tables have been embedded in various conventional 
hardware architectures, which are based on SRAMs, hard-wired 
logic or CAMs.  

Generally, for improving the processing speed of arithmetic 
operations, a parallel processing approach is often used. In case 

of the JPEG algorithm, SIMD architectures, which consist of 
several Processing Elements (PEs), can handle a large number 
of pixel data in parallel. However, all above conventional ar-
chitectures for Huffman coding require sequential operations. 
Therefore, these encoding architectures do not match with the 
SIMD architecture for executing arithmetic operations. If the 
conventional architectures for the encoding operation are 
forced to implement parallel processing, the hardware amount 
would increase drastically due to multiple tables and multiple 
comparison hardware.  
 
3. Flexible Multi -ported Content Addressable Memory 
with Flexible Parallel Search Hardware 

For improving the efficiency of the multi-ported CAM struc-
ture, we have been proposing a Flexible Multi-ported Content 
Addressable Memory (FMCAM) architecture [1], which is a 
novel functional memory for parallel search. 
3.1. Original FMCAM Architecture 

The originally proposed FMCAM architecture has p in-
put/output ports and a common storage capacity, which is 
called contents-table, of 2a reference words with d-bit word-
length. As shown in Fig. 1, each port is able to receive com-
parison data of d-bit length and mask data of d-bit length. The 
corresponding output consists of a match signal of 1-bit length 
and a match address of a-bit length. Furthermore, asynchronous 
processing is allowed at each port so that the search operation 
can start as soon as search-request data is received, without 
waiting for synchronization with the other ports. Due to the 
parallel operation of all ports, the processing speed is p times 
as fast as for a conventional single-port CAM. Besides that, the 
FMCAM architecture applies two additional concepts for reduc-
ing the hardware resources. The first concept is a Bit-Parallel 
and Block-Parallel (BPBP) search instead of the a Bit-Parallel 
and Word-Parallel (BPWP) search, which is often applied in a 
conventional fully-parallel CAM. The second concept is a 
categorization of the stored reference words [3]. As a result, 
the increase of the comparator number due to the multiple 
ports is limited.  
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Fig. 1 Block diagram of the adapted FMCAM.  
 



3.2. Adaption of the FMCAM architecture to coding ap-
plications 
In [1], the FMCAM architecture has been shown to result in ef-
fective devices, indicated by their comparatively small product 
of implementation area and processing time (area-time prod-
uct). Therefore, if this architecture is exploited to process mul-
tiple searches, it is capable to accelerate any application, and in 
particular parallel coding applications, such as data compression 
and encryption.  

In the following the novel ideas for adapting the FMCAM 
architecture to encoding and encryption applications are ex-
ploited.  
3.2.1. Multiple/Single search mode  

The original FMCAM architecture exploits the BPBP  
search instead of the BPWP search. Thus, it lowers the number 
of comparators in spite of having several ports. However, the 
original FMCAM architecture requires more than one clock cy-
cles for completing a comparison task. Applications such as 
Huffman encoding translate each input symbol into a converted 
symbol. Since input and converted symbols have a one-to-one 
relation, the clock cycles after finding a matching symbol are 
wasted.  

For overcoming for this problem, the adapted FMCAM can 
select between two search modes, namely a multiple search 
mode and a single search mode. The multiple search mode ap-
plies if multiple matches to the input data may exist and is 
equivalent to the original FMCAM comparison process. The 
single search mode realizes a faster comparison process for well 
defined single match searches. The adapted FMCAM, which is 
operated in the single search mode, can stop the comparison 
process immediately as soon as the first matching symbol is de-
tected.  
3.2.2. Counting value setting mode  

For decreasing the number of comparators, the original 
FMCAM exploits a categorization concept [3]. The stored ref-
erence words are classified into plural categories according to a 
pre-defined rule. This process, which is executed during initiali-
zation and contents-table input, enables to chose a memory 
structure with single-port banks. To restrict each search request 
to one bank, the adapted FMCAM achieves multi-port capabil-
ity by independent and parallel operation of these banks as in a 
bank-based multi-port memory. Consequently, the comparators 
can be located separately from the contents-table of the mem-
ory banks and a reduction of the number of comparators can be 
realized. However, if the categorized data does not fill the stor-
age capacity provided for a category, a complete search 
through the storage space would waste a number of clock cycles. 
For overcoming this drawback, the adapted FMCAM allows to 
set the clock cycle number for the comparison process accord-
ing to the application needs and can thus eliminate wasted 
clock cycles.   
3.3. Structure of the adapted FMCAM 

The block diagram of the adapted FMCAM, shown in Fig. 1, 
is composed of three main parts, a port block, a category block 
and a controller. These three parts can be operated independ-
ently of each other. 
3.3.1. Port block 

The block diagram of an input/output port module in the 
port block is shown in Fig. 2. It is able to receive comparison 
data and mask data, both of d-bit length. The output data from 
the port module port consists of a match signal of 1-bit length 
and the corresponding  match address of a-bit length. All ports 
support asynchronous processing, which means that the search 

operation can start as soon as search-request data is received, 
without waiting for synchronization with other port modules. 
Due to the parallel operation of all ports, the processing speed 
becomes faster in proportion with the port number p.   

Each port module is composed of a d-bit search-comparator, 
c category-comparators for d-bit words, a category decoder, a 
demultiplexer, several registers and some combinational logic. 
When a port module receives an input data, the category-
comparators compare this input data with the present category 
structure data of the FMCAM to determine the category which 
should be searched. The category decoder translates the cate-
gory-comparator results into control signals for a multiplexer,  
which connects the data from the searched category to the 
search-comparator. Thus, the search-comparator is enabled to 
compare the input data with the relevant reference data of the 
FMCAM. At the same time, the first comparison address gen-
erated by the loop-address-counter, which is described in section 
3.3.3, is memorized in a register, and becomes the starting ad-
dress for the comparison process to the reference data of the 
relevant category. This comparison process continues until the 
address value from the loop-address-counter is again equal to 
the starting value stored in the register. Since the loop-address-
counter continuously keeps counting to the next comparison 
address in each clock cycle and broadcasts this current address 
to all port modules, each port module can memorize its unique 
starting address independently. If the search-comparator out-
puts a match signal, the match address is generated by combin-
ing comparison address and category address. 

Fig. 2 Block diagram of a port module. 
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3.3.2. Category block 

The category block consists of several category banks. 
Each category bank memorizes the reference data as stored 
words in a conventional single-port -memory bank. The refer-
ence data are broadcasted from the category banks to all port 
modules during FMCAM operation. As soon as each port has 
decided on the category of the required reference data, the 
broadcasted reference data from this specific category are 
loaded into the port module.  

A conventional CAM carries out a parallel search within its 
database of reference words. The normal approach for realiza-
tion of this CAM functionality integrates the necessary addi-
tional hardware resources such as the comparators into the 
memory field. This approach results in 2 important problems. 
On one hand, it becomes impossible to use conventional mem-
ory macros for the CAM construction, which restricts wide ap-
plication of the CAM function in integrated systems. On the 
other hand, the introduction of multiple ports becomes difficult 
because the amount of additional hardware increases in propor-



tion to not only the number of reference words but also pro-
portionally to the number of ports. Although various attempts 
to overcome above restrictions have been made, finding an op-
timum tradeoff between processing speed and hardware re-
sources turns out to be difficult. 

For overcoming above drawback, the FMCAM applies the 
separation concept of the CAM-specific hardware, in particular 
the comparators, from the memory field. The chosen realiza-
tion of the comparison function within the multiple ports leads 
however to the necessity of data transfers form the memory 
part to the comparators in the port modules.  
3.3.3. Controller 

The controller is based on two main modules; the category-
registers and the loop-address-counter. The category-registers 
are used to memorize the freely scalable category structure. 
These memorized patterns are broadcasted to each port module. 
The loop-address-counter implements the concept of loop 
counting, which enables the asynchronous parallel operation of 
all ports. The address-space size of the address counter is just 
the same as the address-space size of a category bank in the 
category module. The address counter sequentially generates 
the addresses of the stored reference words in each category 
bank and continues counting independent of whether search-
request data is arriving at the input of a port module or not. 
The conventional counter solution of 1-port CAMs with BPBP 
construction, on the other hand, starts address generation from 
the first address only after receiving input data. Consequently, 
the conventional concept, when extended to the multi-port 
case, would require a synchronization time for the ports, during 
which arriving search requests at a specific port have to wait 
until presently on going searches at other ports are finished.  
Since the loop-address-counter automatically resumes counting 
from the first address after the last address has been reached, 
each port module is able to memorize its individual starting ad-
dress in a register and can execute its search process as soon as 
search-request data arrives. Thus the waiting time due to the 
synchronization process can be removed.  
 
4. Proposal of FMCAM-based parallel coding architec-
ture  
4.1. Architecture concept 
Coding algorithms are often included in image processing and 
encryption applications, which mostly combine parallel and se-
quential processing of the data. Fig. 3-(a) shows the example of 
the JPEG application when implemented in a media processor. 
Typical media processors consist of a parallel processing block, 
a sequential processing block, an internal bus and so on. The 
parallel processing block in the JPEG application is mainly as-
signed to the task of DCT or data quantization. The sequential 
processing block is mainly used for Huffman coding. Since the 
parallel processing block often exploits a SIMD architecture,  
above arithmetic algorithms are executed effectively.  However, 
an efficient parallel-processing implementation of Huffman 
coding is difficult to realize [2]. Therefore, the Huffman encod-
ing occupies a large share of about 30% of the processing time 
in the JPEG algorithm. Since the sequential processing tasks 
depend on the sequential processing block, data has to be trans-
ferred between the parallel and sequential processing blocks 
across the bus, which results in a higher bus traffic and increases 
the frequency of bus conflicts. If the parallel processing block is 
upgraded to enable processing of the Huffman coding in parallel, 
plural Huffman tables as well as the corresponding number of 
processing elements have to be provided. As the result, the 

hardware amount increases drastically in particular due to the 
multiple tables.  

For resolving the above bottleneck, an implementation of 
the adapted FMCAM near the parallel processing block is very 
effective, also for reducing the traffic on the bus. The corre-
sponding block diagram is shown in Fig. 3-(b). Since the adapted 
FMCAM enables to combine the input and output ports of sev-
eral PEs, which are implemented in the parallel processing 
block with SIMD architecture, and execute multiple searches in 
parallel, it allows to overcome the drawbacks of the conven-
tional coding algorithm. The adapted FMCAM is used to map 
the input symbols to the corresponding code word addresses and 
to enable parallel Huffman encoding of multiple input symbols 
in combination with a multi-port RAM. An area-efficient bank-
based multi-port RAM architecture, as proposed in [4], is very 
suitable for implementing the code word table.  

Fig. 3 Concept of a parallel coding architecture using 
multi-ported content addressable memory: (a) Typical 
media processor, (b) media processor utilizing the 
adapted FMCAM. 

External bus
(PCI etc)

Parallel processing
block

Sequential processing
block

Data / Instruction cache

Data I/O
External
memory
controller

External bus
controller

External data
(Picture etc)

Internal bus

RGB => YCbCr
Level-shift

DCT
Quantization etc

Huffman coding

External bus
(PCI etc)

Parallel processing
block

Data / Instruction cache

Data I/O
External
memory

controller

External bus
controller

External memory
(SDRAM etc)

External data
(Picture etc)

Internal bus

RGB => YCbCr
Level-shift

DCT
Quantization etc

FMCAM

(a) (b)

Sequential processing
block

Huffman coding

External memory
(SDRAM etc)

 
 
4.2. FMCAM implementation results as soft-macro 

A soft-macro realization of the adapted FMCAM has been 
developed with verilog-HDL. For verifying the effectiveness of 
the adapted FMCAM, this soft-macro implementation is evalu-
ated in this section with respect to the maximum operating fre-
quency and area consumption, when synthesized with the Sy n-
opsys Design Compiler for a 90nm CMOS technology. In the 
evaluation process the address variable a, the data width vari-
able d and the category variable c are chosen as 8, 32 and 16, 
respectively. The port variable p is varied from 1 to 16 to de-
termine the effect increasing port number.  

Fig. 4 Implementation results as a function of the 
number of ports: (a) maximum operating frequency, 
(b) Area consumption. 
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Fig. 4-(a) shows the maximum operating frequency of the 
synthesized FMCAMs, which is almost constant up to the large 
number of 16 ports. This result indicates that the adapted 
FMCAM has indeed the expected scalability  properties to high 
parallelism. Due to the independent location of port block, 
category block and controller as well as their modules construc-
tion, the maximum operating frequency is practically not influ-
enced by the number of ports.  

Fig. 4-(b) shows the estimated total area of the adapted 



FMCAM as a function of the port number. Since all  memory 
cells are constructed from Flip-Flops in the synthesis, the 
memory banks become larger than in a full-custom design. Gen-
erally, the area of multi-ported architectures, such as multi-
ported SRAM cells, increases with the square of the number of 
ports. This fact has constricted the spread of the multi-ported 
architectures. Since all port modules in the port block of the 
adapted FMCAM have a common contents-table, the area in-
creases only linearly with just about 9% per port. Thus, 
FMCAM is effectively available up to large port numbers as a 
hardware resource for VLSI systems. 
4.3. Experimental result for Huffman encoding 

In this section, several experimental results of the proposed 
FMCAM-based architecture for Huffman encoding are reported. 
Four test pictures are used and shown in Fig. 5. These pictures 
(a) to (d) are taken of various natural motives and have several 
different characteristics for contents type and pixel number. 
Fig. 6 shows the number of clock cycles for the Huffman en-
coding operation with these pictures. The adapted FMCAM is 
compared with a conventional DSP and the original FMCAM 
[1]. The encoding clock cycles with the original FMCAM are 
almost always smaller than with the conventional DSP even in 
the case of 1 port. Moreover, the clock-cycle number is reduc-
ing as expected according to the increasing number of ports. 
The adapted FMCAM further reduces the clock-cycle number 
drastically due to application of the single match mode and the 
counting value setting mode. The average clock cycle number 
for a given port number is 43% smaller than for the original 
FMCAM. Furthermore, in case of picture (d) and for 16 ports, 
the clock cycle number with the adapted FMCAM is 93% 
smaller than with the conventional DSP.  

Fig. 5 Test pictures. 
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Fig. 6 Comparison of clock cycles for Huffman encoding.  
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Table 1 shows the processing efficiency expressed in Mega 
Operations Per Second (MOPS) per mm2. The value of 
MOPS/mm2 for FMCAM is a function of the number of ports, 
which changes from 1 to 16. The  counted operations are the 
comparison tasks in the Huffman-encoding process. For proc-
essing multiple data, several conventional DSPs may be used in 
parallel. Maximum possible frequencies of the both architec-
tures are almost equal to the each other. The maximum fre-

quency constraint condition of the adapted FMCAM is applied 
200MHz. All architecture MOPS become double previous val-
ues according to the number of ports. It seems that the MOPS 
of the conventional DSP are better than that of the FMCAM. 
However the FMCAM architectures can use the hardware re-
sources with better efficiency. Thus, the area consumption re-
mains smaller. Consequently, the MOPS/mm2 value of the 
adapted FMCAM are superior to other architectures. Especially, 
in case of 16 ports, the ability of the adapted FMCAM is 1.7 
times better than the value of the original FMCAM and can 
achieve up to 3.8 times larger than conventional DSPs.  

As a result, the adapted FMCAM can utilize efficiently the 
comparison operation per area for parallel coding applications. 
The adapted FMCAM is a suitable solution for the sequential 
processing block, and can additionally realize to avoid the con-
flicts on the internal bus between the encoding data and other 
signals. Thus, the adapted  FMCAM architecture is a promising 
solution for real-time multimedia and ciphers applications.  
TABLE I COMPARISON OF PROCESSING EFFICIENCY 

MOPS / mm2 2
Comparison operation [MOPS]Maximum frequency
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5. Conclusion 

In this paper, parallel coding architecture using flexible 
multi-ported content addressable memory is proposed.  
This architecture realizes fast coding for multimedia and cipher 
applications using the adapted FMCAM. For Huffman encoding 
in the JPEG application, the clock cycle number of the adapted 
FMCAM is 93% smaller than for a conventional DSP. The ef-
ficiency in MOPS/mm2 of the adapted FMCAM is up to 3.8 
times higher than for conventional parallel operated DSPs.  

Consequently, the adapted FMCAM is a very effective archi-
tecture for ASIC implementation with many real-time coding 
application possibilities, which can be implemented with small 
area consumption. 
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